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Abstract 
 The Scalable Processor-Independent 

Design for Electromagnetic Resilience (SPIDER) is 
a new family of fault-tolerant architectures under 
development at NASA Langley Research Center 
(LaRC).  The SPIDER is a general-purpose 
computational platform suitable for use in ultra-
reliable embedded control applications.  The design 
scales from a small configuration supporting a 
single aircraft function to a large distributed 
configuration capable of supporting several 
functions simultaneously.  SPIDER consists of a 
collection of simplex processing elements 
communicating via a Reliable Optical Bus 
(ROBUS).  The ROBUS is an ultra-reliable, time-
division multiple access broadcast bus with strictly 
enforced write access (no babbling idiots) providing 
basic fault-tolerant services using formally verified 
fault-tolerance protocols including Interactive 
Consistency (Byzantine Agreement), Internal Clock 
Synchronization, and Distributed Diagnosis.  The 
conceptual design of the ROBUS is presented in 
this paper including requirements, topology, 
protocols, and the block-level design. Verification 
activities, including the use of formal methods, are 
also discussed. 

Introduction 
The Scalable Processor-Independent Design 

for Electromagnetic Resilience (SPIDER) is a 
general-purpose fault-tolerant architecture being 
designed at NASA Langley Research Center to 
support laboratory investigations into various 
recovery strategies from transient failures caused by 
electromagnetic effects.  The core of the SPIDER 
architecture is the Reliable Optical Bus (ROBUS).  
As part of an effort partially sponsored by the FAA, 
the ROBUS is being developed in accordance with 

RTCA DO-254: Design Assurance Guidance for 
Airborne Electronic Hardware.   

The SPIDER is a family of general-purpose 
computational platforms suitable for use in ultra-
reliable embedded control applications.  Towards 
this end, the design is intended to scale from a small 
configuration supporting a single aircraft function 
to a moderately large configuration capable of 
supporting several functions simultaneously.  The 
computational platform is suitable for use for any 
safety-critical (Level A) aircraft function.  

SPIDER Overview 
The SPIDER architecture is intended to 

support a collection of N simplex general purpose 
Processing Elements (PEs) communicating over a 
Reliable Optical Bus (ROBUS).  One logical view 
of the SPIDER Architecture is depicted in Figure 1. 
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Figure 1: SPIDER Logical View 

The ROBUS logical behavior is a time-
division multiple access (TDMA) broadcast bus.  In 
order to guarantee reliable communication among 
the good PEs, the bus needs to be protected against 
any bad PE monopolizing its capacity.  
Furthermore, the communication model must 
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support several fundamental services.  The essential 
goal is to ensure reliable communication between 
all pairs of fault-free PEs in the system.  This will 
enable the development of several fault-tolerance 
strategies combining the individual PEs.  For 
example, Figure 2 illustrates a SPIDER 
configuration with three PEs in a Triple Modular 
Redundant (TMR) configuration, four PEs in a 
dual-dual configuration and a single simplex PE.   
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Figure 2: Sample SPIDER Configuration 

ROBUS Requirements 
The ROBUS must provide the following 

capabilities: 

1. All good nodes will observe an identical 
sequence of messages on the ROBUS 

2. The ROBUS will provide a reliable time 
reference for all attached nodes 

3. The ROBUS will provide correct and 
consistent diagnostic information to all 
attached nodes 

4. For a 10 hour mission,  

P(ROBUS Failure) < 10-10 

The first three requirements are desirable 
functional characteristics of a reliable bus.  The 
final requirement is motivated by the fact that the 
ROBUS may support communication for several 
functions whose failure could be catastrophic.  
Since the bus should not be a dominant source of 
failure, we have set the reliability requirement to be 
significantly greater than would be required for any 
aircraft function.  Rushby presents a comparison of 
several architectures with similar requirements [1]. 

Allocation of Requirements 
In this section, we address the implications 

these requirements have on the available design 
choices. Requirement 4 implies that the ROBUS 
will have internal redundancy.  It is not possible to 

meet this reliability goal without replication.  This 
implies that all of the other services must be 
guaranteed in the presence of a bounded number of 
internal ROBUS component failures. 

Reliability 
In order to satisfy Requirement 4, we have 

constructed semi-Markov models that use the same 
fault assumptions as the fault-tolerance protocols.  
Death states in the Markov models correspond to 
violations of fault assumptions. 

Fault Assumptions 
There are at least two approaches to reasoning 

about faults and failures in a digital system.  One is 
to postulate possible component failures and then 
assess the resulting impact on the system.  
Alternatively, one may assume that all faults have 
potentially devastating consequences and then 
design the system relative to this worst case 
assumption. Our approach is closer to the latter, but 
we will allow some variation into the potential 
impact of faults.  We have modified the fault-
classification strategy used in the development of 
the Multiprocessor Architecture for Fault-Tolerance 
(MAFT) [2].  Faults are classified based on the 
observable characteristics to other nodes within the 
system.  The system is partitioned into Fault 
Containment Regions (FCR) that ensure 
independence of random physical failures. The 
failure status of an FCR is then one of four mutually 
exclusive possibilities: 

  
• A good node behaves according to specification 
• A benign faulty node only sends messages that 

are detectably faulty, including nodes that have 
failed silent 

• A symmetric faulty node may send arbitrary 
messages, but does so the same way to each 
receiver 

• An asymmetric faulty node may send different 
arbitrary messages to different receivers 

 
This provides a global classification of the 

fault status of a collection of nodes.  This 
classification is useful for the analysis of the 
various fault-tolerant protocols in the system.  
However, the protocols themselves cannot have 
complete knowledge of the current failure status of 
the other nodes in the system, so the protocols 
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cannot make decisions based upon this 
classification. 

The protocols must make use of local 
knowledge about the fault status.  Each FCR in the 
design will maintain a local determination of which 
FCRs are trusted.   Only information from trusted 
FCRs will be considered during a vote.  For the 
protocols to work properly, a good FCR's local 
view of which nodes to trust must satisfy the 
following properties: 
1. Good nodes always trust other good nodes 
2. When a vote function is computed, no good 

node trusts any benign-faulty node 
3. If FCR i is not asymmetric-faulty, then good 

nodes agree on whether or not i is trusted 

Static Schedule 
The simplest solution to Requirement 1 is to 

first use a static communication schedule for the 
ROBUS.  The initial prototype uses a round robin 
schedule where each PE has equal access to the 
ROBUS.  However, all analysis is based upon the 
weaker assumption that all nodes agree on the 
communication schedule.  This will allow us to 
explore dynamic scheduling algorithms for later 
instances of the SPIDER architecture. 

 

Interactive Consistency 
Since the ROBUS must have internal 

redundancy to achieve the reliability requirements, 
we also need an interactive consistency protocol to 
satisfy requirement 1. In a redundant computer 
system, it is necessary to ensure that all single-
source data items are consistently replicated among 
the redundant computational elements.  Otherwise, 
a single faulty source may be able to overwhelm the 
system.   There are several published algorithms for 
ensuring interactive consistency; the first fully 
general solution is by Pease et al [3].  Interactive 
consistency requirements are: 

 
Agreement -- All non-faulty receivers agree 
on the single source data value received  
 
Validity -- If the originator of the data is 
non-faulty, then all non-faulty receivers 
receive the transmitted value 

 

Protocols that satisfy these requirements 
assume that the participants are synchronized within 
a known skew. 

Clock Synchronization 
Requirement 2 demands a fault-tolerant clock 

synchronization protocol for the ROBUS.  The 
general requirements for clock synchronization are: 

 
Precision---There is a small constant d such 
that for any two clocks that are good at real 
time t:  |C1(t)-C2(t)| < d 
 
Accuracy---All good clocks maintain an 
accurate measure of the passage of time 

 
These properties are sufficient to ensure the 

ROBUS satisfies requirement 2. 
 
Many synchronization protocols are round-

based.  The participants in the protocol periodically 
exchange clock readings to compute an adjustment 
for the next round.  For such protocols, two 
conditions are sufficient to ensure precision and 
accuracy. 

 
Bounded Delay---All good clocks start each 
round, k, within a bounded duration of real 
time 
 
Bounded Adjustment---There is an upper 
bound on the magnitude of the adjustment a 
good clock makes in a round  

 
Bounded delay merely means that the net 

effect of all the computed adjustments maintains the 
precision of the system.  Bounded adjustment 
preserves the accuracy of the synchronized clocks.  
The adjustment bound should be significantly less 
than the duration of a round. 

Diagnosis 
Algorithms for clock synchronization and 

interactive consistency may be designed to operate 
correctly under several different fault-assumptions.  
In order to meet requirement 3, the ROBUS will 
support distributed diagnosis algorithms.   For 
diagnosis to be useful, we require all good nodes to 
agree on the results of the diagnosis protocol.  This 
will be ensured by exchanging the diagnostic data 
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using the interactive consistency protocol.  The role 
of a diagnosis algorithm is to identify failed nodes 
within the system.  The goal of a diagnosis 
algorithm is to ensure the following properties: 

 
Correctness---Every FCR diagnosed as 
faulty by a good FCR is indeed faulty 
 
Completeness---Every faulty FCR is 
eventually diagnosed as faulty 

 
If the fault model includes Byzantine 

(asymmetric) faults, it is impossible to guarantee 
both of these properties [4].  There always exist 
fault scenarios where it is known that there is a fault 
in the system, but it is impossible to identify 
precisely which FCR is faulty.  In such cases, either 
correctness or completeness must be sacrificed.  If 
correctness is sacrificed, then some good nodes may 
be declared faulty and removed from the system.   
If completeness is sacrificed, then actively faulty 
nodes may remain in the system.  The choice of 
which property to guarantee is open to debate.  For 
the ROBUS we have chosen to ensure correctness 
and make the diagnosis as complete as possible. 
 

ROBUS Conceptual Design 

ROBUS Topology 
The ROBUS consists of a collection of N Bus 

Interface Units (BIUs) and M Redundancy 
Management Units (RMUs) connected as a 
complete bipartite graph KN,M.  The N BIUs will 
each have a bi-directional link to a single 
processing element (PE).  A ROBUS consists of N 
+ M distinct fault containment regions, one for each 
BIU and RMU.  An implementation may choose to 
include a PE in the same FCR as its associated BIU, 
but this is not required.  The choice of whether to 
combine a BIU and PE in a single FCR is guided by 
the reliability model.  A PE may contain 
substantially more hardware than a BIU.  If so, its 
failure rate will dominate the BIU failure rate.  We 
may be able to ensure better system reliability if the 
BIU and PE are in separate FCRs. 

 
The topology of the communication structure 

for a SPIDER with a ROBUSN, M is shown in Figure 
3. 
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Figure 3: SPIDER Architectural Structure 

According to the global fault model, we can 
partition the BIUs into four disjoint sets based upon 
their fault classification.  Let GB denote the good 
BIUs, BB the benign faulty BIUs, SB the 
symmetric faulty BIUs, and AB the asymmetric 
faulty BIUs.  We similarly partition the RMUs.  Let 
GR denote the good RMUs, BR the benign faulty 
RMUs, SR the symmetric faulty RMUs, and AR the 
asymmetric faulty RMUs.  The maximum fault 
assumption for the ROBUS protocols is: 

 
1. |GB| > |AB| + |SB| 
2. |GR| > |AR| + |SR| 
3. |AR| = 0 or |AB| = 0 

 
These fault combinations will determine the 

death states in the SURE reliability model.  The 
critical path in the reliability model will be due to 
fault assumption 3.  We can easily add enough 
redundancy to make the probability of ROBUS 
failure due to fault assumption 1 or 2 insignificant. 

Reliability Models 
The ROBUS protocols are designed to work 

whenever the above fault assumptions are satisfied. 
We have developed an ASSIST script to generate 
SURE models for various ROBUS configurations.  
The SURE program computes bounds on the 
solution of a (semi) Markov model. In addition to 
SURE, the programs PAWS and STEM compute 
exact solutions of Markov models.   The programs 
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SURE, PAWS, and STEM all use the same input 
format. 

The reliability models for the ROBUS 
calculate the probability that any of the three fault 
assumptions are violated for a given duration 
mission and hardware fault arrival rate.  Since the 
design is in a conceptual stage, we are using generic 
order-of-magnitude approximations for the fault 
arrival rates.   

The ASSIST script prompts for the number of 
BIUs and RMUs and then generates a user-
modifiable SURE model.  The SURE user must 
specify the percentage of faults that are benign or 

symmetric for both the BIUs and the RMUs.  
Additionally, the SURE user may provide 
diagnostic coverage probabilities for each class of 
symmetric and asymmetric faults.  Finally, the user 
may specify a recovery rate for the diagnosable 
faults.  The only recovery mechanism included in 
the model is graceful degradation.  Faulty units that 
are correctly diagnosed are removed from the 
system.  The model does not include recovery from 
transient faults.  All faults are assumed permanent.  
We intend to add transient faults in the future.  The 
following table enumerates the parameters for the 
generated model:

 

Table 1: Parameters for the Reliability Models 

Parameter Description Default  
λB BIU Fault Arrival Rate 10-6/hour 
λR RMU Fault Arrival Rate 10-6/hour 

Time Duration of Mission 10 hours 
BB Probability that a BIU fault is benign 0 
SB Probability that a BIU fault is symmetric 0 
AB Probability that a BIU fault is asymmetric 1 - (BB + SB) 
BR Probability that an RMU fault is benign 0 
SR Probability that an RMU fault is symmetric 0 
AR Probability that an RMU fault is asymmetric 1 - (BR + SR) 
DSB Probability that a symmetric BIU fault is diagnosable 0 
DAB Probability that an asymmetric BIU fault is diagnosable 0 
DSR Probability that a symmetric RMU fault is diagnosable 0 
DAR Probability that an asymmetric RMU fault is diagnosable 0 
α Rate of diagnosis and reconfiguration (for all diagnosable faults) 1/second 

 

J,K

JλBBB

JλBSBDSB

JλBSB (1-DSB)
JλBABDAB

JλBAB (1-DAB)

KλRBR

KλRSRDSR

KλRSR(1-DSR)
KλRARDAR

KλRAR(1-DAR)

…

…

Reconfiguration
Transitions

Fault
Arrival
Transitions

α α

 
Figure 4: Transitions in ASSIST Model 

 
 

The default failure rate is based on historical 
failure rates for a single VLSI device.  In Kopetz 
([5], page 121), the failure rate for a high quality 
chip is claimed to be better than 10-7/hour. 

Figure 4 shows the transitions generated by the 
ASSIST script when the system is in a state with J 
good BIUs and K good RMUs.  The fault arrival 
transitions cover the various possibilities when a 
new fault arrives.  If there are any diagnosable 
faults present in the current state, then appropriate 
reconfiguration transitions are generated.  The only 
reconfiguration strategy is graceful degradation.  
After a non-benign fault is diagnosed, the protocols 
can ignore it.  Reconfiguration is modeled by 
converting diagnosed faults to benign faults. 

The ASSIST script has been validated both by 
hand inspection and by solving the generated model 
with parameters set to extreme cases.  These 
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examples are easy to check by hand using either the 
algebraic SURE bounds [6] or combinatorial 
analysis.  

Interactive Consistency Protocol 
The Interactive Consistency (IC) protocol is 

designed to satisfy requirement 1.  If all 
communication uses this protocol, then all good 
Processing Elements will observe the same 
sequence of data.  This protocol is also used to 
reliably exchange diagnostic data among the good 
nodes within the ROBUS. 

For the Interactive Consistency protocol, we 
assume that all FCRs are synchronized within a 
known skew and that the implementation can avoid 
adverse effects due to this skew.  Also, every FCR 
knows the communication schedule.  An informal 
description of the protocol is as follows: 

 
1. PE j transmits its message v to BIU j, in 

accordance with the agreed schedule 
2. BIU j broadcasts v to all RMUs 
3. For each RMU k, if RMU k does not receive a 

correctly formatted message from  BIU j, then it 
broadcasts source error to all BIUs, otherwise 
it broadcasts the value vk to all BIUs 

4. Each BIU collects the values received (v1 , …, 
vM).  If a BIU does not receive a correctly 
formatted message from RMU k, it removes 
RMU k from its set of trusted RMUs 

5. Each BIU determines if there is a majority 
among the values received from the trusted 
RMUs    

6. If BIU l determines that a majority of trusted 
RMUs sent the same value vmaj, BIU l transmits 
vmaj to PE l.  Otherwise, BIU l transmits no 
majority to PE l 
 

Theorem: This protocol satisfies both Agreement 
and Validity assuming the maximum fault 
assumption holds. 

 
Proof of Agreement: There are two cases to 
consider,  
Case 1: |AR| = 0  

Since there are no asymmetrically faulty 
RMUs, all good BIUs agree on which RMUs to 
trust.  All good BIUs receive the same vector of 
values in step 4.  Thus, in steps 5 and 6, each good 

BIU will determine the same value to forward to its 
PE. 
Case 2: |AB| = 0 

In this case, the BIU broadcasting in step 2 
cannot be asymmetrically faulty, so all good RMUs 
will broadcast the same value in step 3.  Fault 
assumption 2 ensures that there are more good 
RMUs than the combined total of asymmetric faulty 
and symmetric faulty RMUs.  Since every benign 
faulty RMU is manifest-faulty to every good BIU, 
all benign faulty RMUs will be ignored.  The good 
RMUs form a majority, so the value they broadcast 
in step 3 will be the same as the value transmitted to 
the PEs in step 6. 

 
Proof of Validity: Validity follows immediately 
from the proof of Case 2 for Agreement. 
• If BIU j is good, then all good RMUs will 

correctly forward its value in step 3 
• If BIU j is benign faulty, then all good RMUs 

will broadcast source error in step  
• If BIU j is symmetric faulty, then all good 

RMUs will forward the value received in step 3 
 
There is a useful corollary to Validity that will 

aid in diagnosis. 
 

Corollary: If a good BIU receives invalid data (i.e. 
source error or no majority) as a result of executing 
the Interactive Consistency protocol, then the 
originating BIU is faulty. 

 
By a symmetric argument, we can use the 

same protocol (steps 2 through 5) to exchange data 
between RMUs.  This capability is needed to 
exchange diagnostic information. 

Diagnosis Protocol 
The ROBUS diagnosis protocols are based on 

the MAFT approach to on-line diagnosis presented 
by Walter, et al [7].  The MAFT protocol can be 
abstractly subdivided into two phases: local 
diagnosis and global diagnosis.  In the local 
diagnosis phase, each node monitors the behavior of 
all other nodes.  From these observations, it 
constructs an error syndrome that identifies those 
nodes that it believes to be faulty. The global 
diagnosis phase consists of an interactive 
consistency exchange to reliably distribute the 
accusations followed by a voting step to make a 
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globally consistent decision based upon the set of 
all local accusations. 

In the MAFT architecture, all nodes are 
identical and the nodes are completely connected.  
In the ROBUS, there are two different kinds of 
nodes, the RMUs and the BIUs.  In addition, there 
are no direct links between a pair of BIUs or 
between a pair of RMUs.  The global diagnosis 
phase had to be modified to accommodate the 
ROBUS characteristics.  For the ROBUS protocol, 
there are several levels of diagnostic information: 
1. Suspicions: Node k suspects nodes i and j when 

it knows that at least one of i or j is bad, but 
does not have sufficient information to accuse 
either 

2. Accusations: Node k accuses node j when it 
has sufficient evidence to conclude that node j 
is faulty 

3. Declarations: Node k declares node j to be 
faulty when it knows that all good nodes of the 
same kind as k have sufficient evidence to 
conclude that j is faulty 

4. Convictions: A node is convicted when all 
good nodes have declared it faulty 
 
The principal distinction between accusations 

and declarations is that accusations only depend 
upon local knowledge, but declarations depend 
upon common knowledge.  This common 
knowledge is a side effect of the protocols.  We can 
now make precise the notion of trusted nodes as 
employed by the IC and Synchronization protocols. 

A node is considered trusted if it has not been 
accused, declared, or convicted.  The voting 
functions in the IC protocol and the synchronization 
protocol only consider messages from trusted 
sources.    

A node is considered undeclared if it has not 
been declared or convicted.  This classification is 
needed for some of the votes employed by the 
diagnosis protocol. 

For the diagnosis protocol to work, all 
accusations must satisfy the following property: 

 
 If node k accuses node j, then at least one 

of node k or node j must be faulty 
  
A direct consequence is the following 

property: 
 

If any good node accuses node j, then node 
j is faulty  

 
This ensures that every good node is trusted by 

all good nodes.  We also require that, at the time of 
any vote, no benign-faulty node be trusted by any 
good node.  Finally, we allow good nodes to 
disagree concerning asymmetric faulty nodes, but 
we require that they agree on whether to trust 
symmetric-faulty nodes. 

There are several ways for a node to make an 
accusation.  These include both direct error 
checking by the receiving node and sufficient 
disagreement with voted results.  Suspicions against 
node k are promoted to accusations when it is 
known that k is suspected in conjunction with at 
least one good node. 

A node may make a declaration in at least two 
ways.  First, the interactive consistency protocol 
provides partial diagnostic information.  If the result 
of an interactive consistency exchange is any sort of 
error, then all good receiving nodes know that the 
originator is faulty.  In this case, since all good 
nodes know the source is faulty, they all declare the 
source faulty.  The second mechanism for making 
declarations is based upon distributed diagnostic 
information. If there is sufficient evidence in a 
consistent set of accusations to conclude that a node 
is faulty, then that node is declared faulty.  A set of 
accusations is consistent if all good nodes (of the 
same kind) agree on the contents of that set of 
accusations.   There is sufficient evidence to 
conclude that a node is faulty if it accuses itself or if 
it is accused by a majority of undeclared nodes. 

 
The ROBUS diagnosis protocol is as follows: 
 

1. All nodes gather accusations against all other 
nodes  

2. All nodes gather declarations based on the 
properties of the interactive consistency 
protocol 

3. The BIUs periodically exchange their 
accusations with all other BIUs using the 
interactive consistency protocol.  If a majority 
of undeclared BIUs accuse a node, that node is 
declared faulty 

4. The RMUs periodically exchange their 
accusations with all other RMUs using the 
interactive consistency protocol.  If a majority 
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of undeclared RMUs accuse a node, that node 
is declared faulty 

5. All BIUs broadcast their declarations to all 
RMUs.  The RMUs perform a majority vote of 
the declarations received from trusted BIUs 

6. All RMUs broadcast their declarations to all 
BIUs.  The BIUs perform a majority vote of the 
declarations received from trusted RMUs 

7. Any node declared faulty by either a majority 
of trusted BIUs or a majority of trusted RMUs 
is convicted 

8. The BIUs forward the list of convicted nodes to 
the PEs 
 
Since the current system is designed using the 

assumption that all faults are permanent, any node 
that is convicted is permanently isolated from the 
rest of the system.  The protocol is being modified 
to remove this assumption. 

Formal proofs of the distributed diagnosis 
protocol are described in [8]. 

The protocol ensures that: 
• Every declared node is convicted 
• Every benign faulty node is declared 
• Every symmetric faulty nodes accused by 

some good node is declared 
• Every node accused by a trusted majority 

of nodes is declared 
Both the distributed diagnosis and interactive 

consistency protocols are synchronous.  It is 
essential that the inherent asynchrony between any 
pair of nodes be bounded.  Further, the design must 
ensure that the relative skew be masked. 

Clock Synchronization 
The SPIDER clock synchronization protocol is 

an event-based protocol.  Periodically, good clocks 
will generate events indicating that it is time to start 
the next round.  The protocol is designed to ensure 
that the events generated by good clocks are echoed 
in such a way that all good clocks will reset within 
a short time of each other.  The duration of a round 
is approximately P ticks.  An informal description 
of the protocol follows: 

 
RMU:  

Process 1: When time to resynchronize for 
round k, broadcast (init, k) to all BIUs 
 

Process 2: If Accept?(echo, k) then broadcast 
(echo, k) to all BIUs and reset counter for 
round k 
 

BIU: 
Process 1: If Accept?(init, k) then broadcast 
(echo, k) to all RMUs 
 
Process 2: If Accept?(echo, k) then reset 
counter for round k (and transmit reset to PE) 
 
The fault-tolerance is in the definition of 

function Accept?.  It selects the middle event from 
the trusted sources.  The times to resynchronize and 
values for resetting counters are selected to 
accommodate the inherent communication delays. 

Communication between independently 
clocked synchronous systems is necessarily 
imprecise.  If a node sends a message at time t, it 
will be received by all good nodes during the time 
interval [t + d, t + d + e].  Here d denotes the 
minimum communication delay and e is a bound on 
the error.  The dominant source of error is due to 
discretization; e is always larger than the duration 
of one clock tick.  Other factors that contribute to 
this error term are jitter, drift, and slight differences 
in communication delay due to various causes (e.g. 
temperature effects, differences in wire length, etc.). 
 
Lemma: All good RMUs reset their clocks within 
2e of each other. 

 
Proof: There are two cases. 
Case 1: |AB| = 0 

In this case, the echo broadcast events 
generated by BIU process 1 are totally ordered.  All 
good RMUs will accept in response to (essentially) 
the same event.  The relative time difference that 
two good RMUs can observe this event is bounded 
by e. 
Case 2: |AR| = 0 

In this case, the init events generated by the 
RMUs are totally ordered.  All good BIUs will 
accept init (and broadcast echo) within e of each 
other.  Since accept is bounded by good events, e is 
the maximum skew effect an asymmetric fault can 
have.  Adding another e for the inherent 
imprecision in communication ensures that all good 
RMUs will accept within 2e of each other.   
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A symmetric argument bounds the separation 
of good BIUs.  The separation of any BIU/RMU 
pair is bounded by 3e leading to the following 
result: 
 
Theorem: The synchronization protocol satisfies 
bounded delay. 

 
The protocol also guarantees bounded 

adjustment, thus leading to: 
 

Theorem: The synchronization protocol guarantees 
precision and accuracy. 

 
Informal proofs of these properties can be 

found in [9].  Machine checked proofs are in 
progress. 

ROBUS Architecture 
The ROBUS consists of two primary design 

elements: the BIU and the RMU.  The block 
structure of these devices is presented below. 

BIU Block Model 
The block structure of a BIU is depicted in 

Figure 5.  There are several functional blocks.  The 
Input Unit is responsible for de-skewing data 
messages, and accusing any source that transmits an 
invalid message.  It also directs all synchronization 
messages to the Synchronization Unit.  The Route 
& Vote unit performs the core functions of the 
interactive consistency protocol.  It either relays 
messages or votes results.  The Synchronization 
Unit implements the event voter needed for the 
synchronization protocol.  When enough 
synchronization messages have arrived, it signals 
the Control Unit to take appropriate action.  The 
Diagnostics Unit maintains all of the diagnostic 
state information.  It generates a vector of trusted 
sources based on the current accusations, 
declarations, and convictions.  It also performs the 
voting required in the diagnosis protocol.  The 
Output Unit selects the appropriate source for the 
next broadcast message.  The Control Unit realizes 
the steps of all of the ROBUS protocols and 
maintains the schedule and timer.  Finally, the PE 
Interface manages communication with the attached 
PE. 
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Figure 5: BIU Block Model 

RMU Block Model 
The block structure of the RMU design is 

depicted in Figure 6.  Its structure is quite similar to 
the BIU.  The main difference is that the RMU does 
not have an interface to the PE.  The operation of 
the Control Unit is also different, due to the 
differing roles in the protocols. 
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Figure 6: RMU Block Model 

 

Verification Issues 
We are developing the ROBUS in accordance 

with guidance found in RTCA DO-254.  Since the 
ROBUS is intended to support any aircraft function 
whose failure would be catastrophic, the ROBUS is 
being developed to design assurance level A. 
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DO-254 requires that the design assurance for 
any level-A device employ approaches found in 
appendix B.  Two of these are relevant to this 
development. 

The primary design-assurance strategy for the 
ROBUS is the use of formal methods.  The 
application of formal methods is targeted to early 
life-cycle application.  The emphasis is upon formal 
proof of the critical fault-tolerance protocols.  We 
have complete machine-checked proofs of the 
interactive consistency protocol and the distributed 
diagnosis protocol.  These proofs are described in 
detail by Geser and Miner [8].  The formal 
verification of the synchronization protocol is 
incomplete.  The main properties have been 
checked, but there is still a need to put the pieces 
together. 

The other relevant strategy from DO-254 
appendix B is the use of elemental analysis.  We 
have selected the TransEDA tool VN-cover to 
support this analysis, but have not yet carried out 
this verification exercise.  Our preliminary analysis 
indicates that coverage of VHDL code using 
Focused Expression Coverage is mathematically 
equivalent to MC/DC coverage. 

Concluding Remarks 
In this paper, we have presented a conceptual 

design of a family of fault-tolerant architectures.  
The SPIDER architecture provides a flexible 
framework for building fault tolerant applications.  
The primary mechanism for ensuring fault-
tolerance in the SPIDER family of architectures is 
the Reliable Optical Bus (ROBUS).  The ROBUS 
reliably provides several key fault tolerant 
capabilities.  It provides an interactive consistency 
protocol to enable reliable communication in the 
presence of arbitrarily malicious failures.  It 
provides consistent diagnostic information so all 
nodes can make consistent reconfiguration 
decisions.  Finally, it provides an underlying fault-
tolerant synchronization mechanism to provide a 
reliable time source, and provide a means to 
construct synchronous protocols on top of the 
ROBUS.  These protocols have been formally 
verified to provide the greatest possible assurance 
that they are correct. 

The SPIDER protocols all have very simple 
descriptions.  However, their interactions are quite 
complex.   We have presented a block model 
illustrating one hardware realization of these 
protocols.  This design has been implemented on a 
laboratory prototype and testing is currently in 
progress. 
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